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Problem Set 5

This fifth problem set explores the regular languages and their properties. This will be your first
foray into computability theory, and I hope you find it fun and exciting!

As always, please feel free to drop by office hours, ask on Piazza, or email the staff list if you have
any questions. We'd be happy to help out.

This problem set has 38 possible points. It is weighted at 5% of your total grade.
Good luck, and have fun!
There is no checkpoint for this assignment.

Due Monday, May 11" at the start of class.
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Problem One: Constructing DFAs (8 Points)

For each of the following languages over the indicated alphabets, construct a DFA that accepts precisely
the strings that are in the indicated language. Your DFA does not have to have the fewest number of states
possible. You should specify your DFA as either a state-transition diagram (the graphical representation
we've seen in class) or as a table.

We have an online tool you can use to design, test, and submit the DFAs in this problem. To use it,
visit the CS103 website and click the “DFA/NFA Editor” link under the “Resources” header. We strongly
recommend this tool, as it makes it easy to design, test, and submit your solutions. If you submit through
this system, please have only one team member submit your automata, and include the name of that per-
son in your submission.

1. For the alphabet Z = {a, b, c}, construct a DFA for the language { w € Z* | w contains exactly
two cs. }

ii. For the alphabet Z = {a, b}, construct a DFA for the language { w € Z* | w contains the same
number of instances of the substring ab and the substring ba }. Note that substrings are allowed
to overlap, so aba € L and babab € L.

iii. For the alphabet = = {a, b, c, ..., z}, construct a DFA for the language { w € Z* | w contains
the word “cocoa” as a substring }. As a shorthand, you can specify multiple letters in a transi-
tion by using set operations on X (for example, = — {a, b})"

iv. Suppose that you are taking a walk with your dog along a straight-line path. Your dog is on a
leash that has length two, meaning that the distance between you and your dog can be at most
two units. You and your dog start at the same position. Consider the alphabet = = {y, d}. A
string in Z* can be thought of as a series of events in which either you or your dog moves for-
ward one unit. For example, the string “yydd” means that you take two steps forward, then your
dog takes two steps forward. Let L = { w € Z* | w describes a series of steps that ensures that you
and your dog are never more than two units apart }. Construct a DFA for L.

Problem Two: Constructing NFAs (6 Points)

For each of the following languages over the indicated alphabets, construct an NFA that accepts pre-
cisely the strings that are in the indicated language. You should specify your NFA as either a state-tran-
sition diagram (the graphical representation we've seen in class) or as a table. Your NFA may use e-tran-
sitions if you wish and does not have to have the fewest number of states possible. We recommend de-
signing, testing, and submitting your automata using our online system; see above for details.

1. For the alphabet X = {a, b, c}, construct an NFA for the language { w € Z* | w ends in a, bb, or
ccc }.

ii. For the alphabet 2 = {a, b, ¢, d, e}, construct an NFA for the language { w € Z* | the last charac-
ter of w appears nowhere else in w, and Iwl > 1 }.

1ii. For the alphabet X = {a, b}, construct an NFA for the language { w € Z* | w contains at least two
b's with exactly five characters between them }. For example, baaaaab is in the language, as is
aabaabaaabbb and abbbbbabaaaaaaab, but bbbbb is not, nor are bbbab or aaabab.

* DFAs are often used to search large blocks of text for specific substrings, and several string searching algorithms are built
on top of specially-constructed DFAs. The Knuth-Morris-Pratt and Aho-Corasick algorithms use slightly modified DFAs to
find substrings extremely efficiently.
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Problem Three: Designing Regular Expressions (8 Points)

Below are a list of alphabets and languages over those alphabets. For each language, write a regular ex-
pression for that language.

We have an online tool you can use to design, test, and submit the regular expressions in this prob-
lem. To use it, visit the CS103 website and click the “Regex Editor” link under the “Resources” header.
We strongly suggest using this tool, as it makes it easy to design, test, debug, and submit your solutions. If
you submit through this system, please have only one team member submit your regular expressions, and
include the name of that person in your submission.

i. LetX={a,b}andlet L={ we Z*|w does not contain ba as a substring }. Write a regular ex-
pression for L.

ii. LetX={a,b}andlet L={ we Z*|w does not contain bb as a substring }. Write a regular ex-
pression for L.

iii. Suppose you are taking a walk with your dog on a leash (as in Problem 1.iv). As in that problem,
your leash has length two. Let ¥ = {y, d} and let L = { w € Z* | w represents a walk with your
dog on a leash where you and your dog both end up at the same location }. For example, the string
yyddddyy is in L because you and your dog are never more than two steps apart and both of you
end up four steps ahead of where you started; similarly, ddydyy € L. However, yyyyddd ¢ L,
since halfway through your walk you are three steps ahead of your dog; ddyd ¢ L, because your
dog ends up two steps ahead of you; and ddyddyyy ¢ L, because at one point in your walk your
dog is three steps ahead of you. Write a regular expression for L.

iv. LetZ={a,b}andlet L ={ we Z* | w# ab }. Write a regular expression for L.

Problem Four: p(X*) (2 Points)
Let 2 be an alphabet. Give a brief English description of the set g(Z*). Briefly justify your answer.

Problem Five: Cardinalities and Concatenations (2 Points)

Recall that if L is a language, L" is the n-fold concatenation of L with itself. (As a special case, the lan-
guage L’ is defined to be {&}).

Prove or disprove: if L is a language and k > 1, then IL"l = ILI*.

Problem Six: Finite and Cofinite Languages (3 Points)

A language L is called finite if L contains finitely many strings. More precisely, a language L is a finite
language if ILI is a natural number. A language L is called cofinite if its complement is a finite language;
that is, L is cofinite if |LI| is a natural number.

i. Prove that any finite language is regular.

ii. Prove that any cofinite language is regular.
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Problem Seven: State Elimination (3 Points)

The state elimination algorithm gives a way to transform a finite automaton (DFA or NFA) into a regular
expression. It's a really beautiful algorithm once you get the hang of it, so we thought that we'd let you try
it out on a particular example.

Let 2= {a, b} and let L = { w € Z* | w has an even number of a's and an even number of b's}. Below is a
finite automaton for L that we've prepared for the state elimination algorithm by adding in a new start
state gu.» and a new accept state Guc:

We'd like you to use the state elimination algorithm to produce a regular expression for L.

1. Run two steps of the state elimination algorithm on the above automaton. Specifically, first remove
state g1, then remove state ¢,. Show your result at this point.

ii. Finish the state elimination algorithm. What regular expression do you get for L?

Problem Eight: Derivatives of Regular Languages (4 Points)
Let L be a language over 2. For any a € Z, the derivative of L with respect to a, denoted 9. L, is the fol-
lowing language:
doL={weZ¥lawelL}
Intuitively, you can think of 9, L as follows: start with the language L, then remove from L all strings that

don't start with a. This leaves behind a language consisting only of strings beginning with a. Then, delete
a from the front of each remaining string. The set of strings you're left with is 0, L.

As an example, let 2 = {a, b} and let L = { €, a, aabb, aaab, ba, bb }. Then 09, L = { €, abb, aab }.

In this problem, we'd like you to prove that if L is a regular language over 2 and a € Z, then 9, L is regu-
lar as well. This shows that the regular languages are closed under differentiation.

i. Let L be a regular language over X and let a € Z. Describe a construction that transforms a DFA
for L into a DFA for 0, L.

ii. Prove that your construction from part (i) is correct by arguing the following: your transformed
DFA accepts a string w € 2* if and only if w € 9, L.
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Problem Nine: Why the Extra State? (2 Points)

In our proof that the regular languages are closed under the Kleene closure operator (that is, if L is regu-
lar, then L* is regular), we used the following construction:

1. Begin with an NFA N where Z(N) = L.
2. Add in a new start state Gar.

3. Add an e-transition from gg.r to the start state of N.
4. Add e-transitions from each accepting state of N to gsuar.
5. Make gqar an accepting state.

You might have wondered why we needed to add g... as a new state to the NFA. It might have seemed
more natural to do the following:

1. Begin with an NFA N where #(N) = L.
2. Add e-transitions from each accepting state of N to the start state of N.
3. Make the start state of N an accepting state.

Unfortunately, this construction does not work correctly.

Find a regular language L and an NFA N for L such that using the second construction does not create an
NFA for L*. Justify why the language of the new NFA isn't L*.

Extra Credit Problem: Semilinear Languages (1 Point Extra Credit)

This week's extra credit problem might has a bit more new notation in it than usual, but it's a really cool
problem. If you have some extra time to work through this problem, I think you'll find that the payoff is
huge and that you'll have a much deeper understanding of the regular languages.

A linear set is a set of natural numbers of the form { an + b|n € N } where a and b are natural numbers.
For example, the set { 7, 12, 17, 22, 27, ... } is a linear set because it is equal to { Sn + 7 | n € N }. Addi-
tionally, the set {137} is a linear set because it's equal to { On + 137 In e N }.

We'll say that a set S is a semilinear set if S is the union of finitely many linear sets. As an example, the
set{S5n+71neN}U{3n+0lneN}U{On+111neN }isasemilinear set. The empty set techni-
cally counts as a semilinear set, since it's the union of zero linear sets.

Finally, if L is a language, define ¥(L) to be the set
P(L)={ n € Nl there is a string in L of length n }

In other words, ¥(L) is the set of all numbers that are the lengths of strings in L. As examples, we have
that ¥({e, baa, abba, babba}) = {0, 3, 4, 5}, that ¥(Z*) = N, and that ¥((ab)*)={ n e Nlnis even }.

Let Z = {a} be an alphabet consisting of a single character and let L be an arbitrary language over Z.
Prove that L is regular if and only if ¥(L) is semilinear. (Hint: This is a great time to use the fact that ev-
ery regular language can be expressed as a regular expression.)



